

OVERSHOOT: Challenges and choices after we exceed 1.5°C

ANDY REISINGER

Lecture series CMCC - Centro Euro-Mediterraneo sui Cambiamenti Climatici

18 SEPTEMBER 2025

ACKNOWLEDGEMENTS

DOI: 10.1146/annurev-environ-111523-102029

Annual Review of Environment and Resources

Overshoot: A Conceptual Review of Exceeding and Returning to Global Warming of 1.5°C

Andy Reisinger,¹ Jan S. Fuglestvedt,² Anna Pirani,³ Oliver Geden,⁴ Chris D. Jones,^{5,6} Shobha Maharaj,^{7,8} Elvira S. Poloczanska,^{9,10} Angela Morelli,¹¹ Tom Gabriel Johansen,¹¹ Carolina Adler,¹² Richard A. Betts,^{5,13} and Sonia I. Seneviratne¹⁴

CONTENT

- Will we exceed 1.5°C?
- How did we get there what now?
- Conditions for a return to 1.5°C
- Risks under overshoot scenarios
- Challenges and choices

WE WILL EXCEED WARMING OF 1.5°C

THE NEXT EXIT: EVERY YEAR, EVERY TONNE MATTERS

THE NEXT EXIT: EVERY YEAR, EVERY TONNE MATTERS

THE NEXT EXIT: EVERY YEAR, EVERY TONNE MATTERS

THE LONG WAY HOME

THE LONG WAY HOME

"Overshoot" =

exceed and decline

(to a specified warming level)(within a specified time frame)

THE LONG WAY HOME: EVERY TONNE MATTERS

CONDITIONS FOR A RETURN TO 1.5°C

1. limit magnitude of overshoot:

reach global net-zero CO₂ as soon as possible reduce non-CO₂ emissions as much as possible

2. limit duration of overshoot:

reduce warming after the peak back to/below 1.5°C: net-negative CO₂ emissions and further CH₄ reductions

LIMIT PEAK WARMING AS CLOSE AS POSSIBLE TO 1.5°C

- meet existing targetsthrough robustimplementation plans
- increase ambition of NDCs, and of sectoral and domestic targets

POLICY FORUM

CLIMATE POLICY

Credibility gap in net-zero climate targets leaves world at high risk

Looking at policies instead of promises shows that global climate targets may be missed by a large margin

By Joeri Rogelj^{1,2,3}, Taryn Fransen^{4,5}, Michel G. J. den Elzen^{6,7}, Robin D. Lamboll¹, Clea Schumer⁴, Takeshi Kuramochi^{8,9}, Frederic Hans⁸, Silke Mooldijk⁸, Joana Portugal-Pereira¹⁰ pledge actions and emissions reductions that are to be achieved over the next decade (known as nationally determined contributions, or NDCs, currently targeting 2030) and long-term strategies toward net-zero

(PREPARE TO) REDUCE WARMING AFTER THE PEAK

Net-negative CO₂ emissions

& further CH₄ reductions

CLIMATE STABILIZATION PATHWAY

ILLUSTRATIVE OVERSHOOT PATHWAY: CDR

ILLUSTRATIVE OVERSHOOT PATHWAY: gross CO₂

ILLUSTRATIVE OVERSHOOT PATHWAY: gross CH₄

(PREPARE TO) REDUCE WARMING AFTER THE PEAK

Reducing temperature by 0.1°C after the peak requires:

- ~ 220 Gt cumulative net-negative CO₂ emissions
- ~ further 60-70 Mt sustained reduction of CH₄ emissions

beyond what's necessary already to halt (stabilise) global warming below 2°C

RETURN ≠ **RECOVERY**

RETURN ≠ **RECOVERY**

A reversal of global temperature would not reverse all bio-geo-physical Earth system changes

EVOLUTION OF RISK UNDER OVERSHOOT

Risk could remain materially elevated:

- hazard and exposure do not fully reverse due to land-cover and landuse changes
- higher vulnerability due to poverty, intergenerational malnutrition, erosion of institutional capacity
- on-going pressure from land-based CDR

Example: Heat wave mortality

Reisinger et al (2025) doi:

Example: Heat wave mortality

Reisinger et al (2025) doi:

Example: Heat wave mortality

Risk could decline below pre-overshoot levels

if the overshoot period results in effective adaptation measures to reduce vulnerability

Reisinger et al (2025) doi: 10.1146/annurev-environ-111523-102029

EVOLUTION OF RISK DEPENDS ON CONTEXT

Example b: Coastal erosion and inundation from sea level rise (escalating climate risk in overshoot due to increasingly severe hazard, exposure and vulnerability)

Drivers of climate risk
Overall climate risk

Example c: **Ecosystem disturbances intensified by land demand for mitigation** (increased climate risk in overshoot due to mitigation compounding vulnerability)

Drivers of climate risk
Overall climate risk

A world that returns to 1.5°C after overshoot will be more vulnerable and more damaged than if we had never exceed 1.5°C ...

... but a return to 1.5°C would reduce many risks and avoid further losses compared to a world that remains above 1.5°C permanently

ENDURING ADAPTATION NEEDS

- existing adaptation gaps
- existing adaptation finance gaps
- competition for climate finance and policy attention
- perception risk that adaptation is no longer critical if there is an in-principle commitment to reverse warming
- increasing risks in near-term; potential under-investment if adaptation plans assume successful reversal
- high potential for inequitable distribution of benefits and widening gaps under reversal of warming

CHALLENGES AND CHOICES TO REVERSE WARMING

- explicit global consensus about return to 1.5°C? (Paris Article 4.1 can only get us there if overshoot is very limited)
- global burden-sharing on steroids
- beyond "net-zero": (front-runner) countries/corporates need net-negative targets and credible pathways for delivery by 2050
- beyond "polluter-pays": challenges to Emissions Trading Schemes
- redefining role of governments and societal consensus in driving net-negative emissions; domestic and sectoral burden sharing

What will it take to "Keep 1.5°C Alive"?

1.5°C has enduring relevance beyond hindsight and grief

Navigating a return back to 1.5°C ("overshoot"):

- 1. limit peak warming as close as possible to 1.5°C
- 2. prepare to reduce warming after the peak

A clear value proposition for a return to 1.5°C

Pathways, targets and policy tools for sustained net-negative emissions

Limits to feasible temperature decline ←→ overconfidence in overshoot

Embed adaptation in overall strategy

What will it take to "Keep 1.5°C Alive"?

15°C

Researchers and policymakers will need to find opportunities to begin regular conversations about overshoot

to refine knowledge needs, research gaps, and windows of opportunity for a post-peak return to 1.5°C. "

Reisinger et al (2025) doi: 10.1146/annurev-environ-111523-102029

ershoot

Embed adaptation

Thank you

Andy.Reisinger@anu.edu.au

Start the conversation at the upcoming overshoot conference:

https://overshootconference.org/